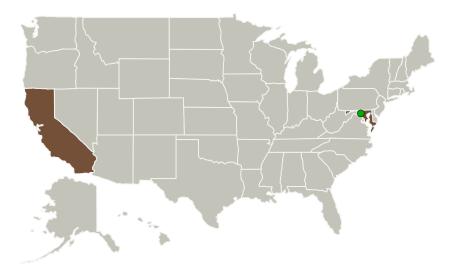
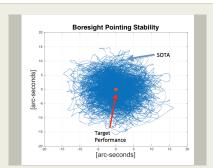
Arcsecond Pointing Stability on a CubeSat Platform, Phase I



Completed Technology Project (2016 - 2016)


Project Introduction

In this proposal, Tyvak Nano-Satellite Systems LLC (Tyvak) will improve the state-of-the-art in low-jitter CubeSat platforms to one arc-second pointing stability. This platform will address the increasing attitude control performance requirements of CubeSats to enable commercial and scientific missions previously restricted to larger and more expensive satellite platforms. Reducing jitter in attitude determination and control systems (ADCS) CubeSat platforms has typically been an after-thought. Miniaturizing large satellite ADCS to CubeSat size has resulted in relatively poor attitude stability due to inexpensive reaction wheels and high noise IMU?s. In the past five years, the CubeSat industry has seen a huge increase in customers with miniaturized payloads seeking high capability platforms. Arcsecond attitude stability is an enabling technology for many optical missions, including optical communication, space based optical inspection, and exoplanet imaging.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Tyvak Nano-Satellite	Lead	Industry	Irvine,
Systems Inc.	Organization		California
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland

Arcsecond Pointing Stability on a CubeSat Platform, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Images	
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	
Technology Areas	
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

Arcsecond Pointing Stability on a CubeSat Platform, Phase I

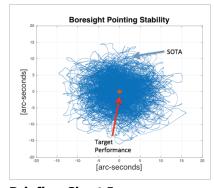
Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations		
California	Maryland	

Project Transitions

0

June 2016: Project Start



December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139721)

Images

Briefing Chart Image Arcsecond Pointing Stability on a CubeSat Platform, Phase I (https://techport.nasa.gov/imag e/130417)

Final Summary Chart Image
Arcsecond Pointing Stability on a
CubeSat Platform, Phase I Project
Image
(https://techport.nasa.gov/imag
e/132479)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Tyvak Nano-Satellite Systems Inc.

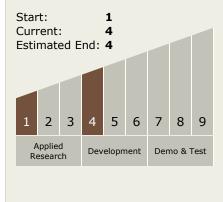
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Solomon Westerman

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Arcsecond Pointing Stability on a CubeSat Platform, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.2 Navigation
 Technologies
 - ☐ TX17.2.3 Navigation Sensors

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

